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Abstract
The time evolution of a system of bilinearly coupled bosonic modes is
investigated using the real-time path integral technique in the coherent-state
representation. In order to get the stationary trajectories, the corresponding
Lagrangian function is diagonalized and then the path integrals are evaluated
by means of the stationary-phase method. The present treatment is applied to
a dissipative harmonic oscillator within the Caldeira–Leggett model. The time
evolution of the reduced density matrix in the basis of coherent states is given in
simple analytic form for weak system–bath coupling, i.e. the so-called rotating-
wave terms can be evaluated exactly but the non-rotating-wave terms only in
a perturbative manner. The validity range of the rotating-wave approximation
is discussed from the viewpoint of spectral equations. In contrast to many
perturbative approaches, the bath degrees of freedom are treated explicitly.
In addition, it is shown that systems without initial system–bath correlations
can exhibit initial jumps in the population dynamics even for rather weak
dissipation. Only with initial correlations can the classical trajectories for the
system coordinate be recovered.

PACS numbers: 03.65.Yz, 05.30.−d, 31.15.Kb

1. Introduction

The problem of describing damping in open quantum systems has been discussed for a long
time in the literature (see, for example, [1]). Among the first treatments of such problems were
the quantum Langevin equation and quantum master equations which are mainly concerned
with weakly damped systems in which the time of relaxation in the system is larger than the
time scale of the undamped motion and larger than the relaxation time of an environment.
A more general method without the restriction to weak damping is the Feynman–Vernon
path integral approach [2–4] which uses the functional integral technique in a phase-space
representation. This treatment allows one to investigate the quantum dynamics of dissipative
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systems with arbitrarily strong friction and has been successfully applied (see, for example,
[5–9]).

In this paper, we present a method for the investigation of the dynamics of bilinearly
coupled bosonic modes based on the real-time path integrals in the coherent-state
representation [3]. This representation has only been used as a numerical tool in a few
investigations studying the propagation of wave packets [10–12] and equilibrium statistical
mechanics properties [13]. In the present work, the coherent-state representation will be used in
a fully analytical study. We applied this technique to the time evolution of a damped harmonic
oscillator. Dissipation will be described with the well-known Caldeira–Leggett Hamiltonian
[5], i.e. the full system is split into a relevant part and a thermal bath consisting of harmonic
oscillators characterized by the spectral density. The system–bath coupling is assumed to be
bilinear. As far as the functional integral is of Gaussian type, the stationary-phase method
leads to exact results. This is the case for one or several harmonic oscillators coupled to
a thermal bath consisting of further harmonic oscillators. Our goal is to diagonalize the
Lagrangian allowing us to get stationary trajectories. In this way, we obtain the time evolution
of the reduced density matrix while similar procedures of diagonalizing the Hamiltonian used
previously [14, 15] allow one to get only the time evolution of the system operators.

The problem of a damped harmonic oscillator was already extensively discussed in the
literature (see [17, 14, 16, 1] and references therein). Here we study the time evolution in
the coherent-state representation to get expressions for weak system–bath coupling which
are easier to evaluate than those in the previous literature and which can easily be extended
to a set of coupled harmonic oscillators. Since we use the Hamiltonian in the creation/

annihilation-operator representation the rotating-wave approximation (RWA) can be performed
immediately by neglecting the non-rotating-wave terms. This way we get quite simple
expressions for the evolution of the reduced density matrix in the basis of coherent states for
uncorrelated and correlated initial system–bath conditions, which are used for the evaluation
of the expectation values of the system, in particular the population dynamics for different
types of initial states of the system. One important feature of the present approach is
the explicit treatment of the bath modes. As is shown below, this has effects on the
population dynamics already for weak system–bath interaction. The present study is quite
important since the problem of coupled harmonic oscillators serves as a testbed for many
dissipation theories. Such a model system is, for example, used to describe electron transfer
reactions [17].

The paper is organized as follows. In section 2, we present the general expressions for the
path integrals in coherent-state representation for a system of bosonic particles. In a next step,
the model Hamiltonian for a damped harmonic oscillator is recapitulated in section 3. In order
to evaluate the functional integral, the Lagrangian is diagonalized within and without the RWA.
This procedure is presented in section 4. Together with the correct expression for the functional
integral in the coherent-state representation this builds the foundation of our investigation.
Next, the spectral equations for the system after diagonalization are obtained together with
their reduction to the RWA. The validity range of the RWA is discussed in section 5 by using
the spectral equations. The results are applied to calculate the dynamics of the reduced density
matrix for non-equilibrium factorized and for correlated initial conditions. The time evolution
of the energy level population and the occupation number for a damped harmonic oscillator are
determined in section 6. Besides, we show the influence of the correlated initial system–bath
conditions on the evolution of the mean value of the system coordinate. In the last section,
a short conclusion and further possible extensions and applications of the present method
are given. Atomic units are used throughout the paper and the Boltzmann constant is set
to unity.
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2. Path integral formalism in coherent-state representation

In this section, general expressions for the matrix elements of the time-evolution operator e−iHt

with a dissipative Hamiltonian H are obtained using the path integral technique. In contrast to
the well-known Herman–Kluk method [18, 19] where coherent states are used together with
a phase-space representation, here we only use the basis of coherent states for the calculation
of time-evolution operators.

Following the treatment developed, for example, in [20], we obtain the functional integral
defined in the coherent-state representation for an arbitrary bosonic Hamiltonian. The coherent
states |z〉 are defined as usual for a harmonic oscillator [3]

|z〉 =
∑

n

zn

√
n!

|n〉 e−|z|2 â|z〉 = z|z〉 (1)

where |n〉 is the nth eigenstate of a harmonic oscillator, â and z are the annihilation operator
and its eigenvalue, respectively. In addition, we will use the completeness relation for the
coherent states ∫

dz∗ dz

π
|z〉〈z| = 1. (2)

The aim is to calculate the matrix element

〈{zω}| e−iHt |{z′
ω}〉 (3)

where the state |{zω}〉 denotes a product of coherent states |zω〉 for all bath modes with
corresponding frequencies ω. The Hamiltonian H is assumed to be normal ordered. In order
to evaluate this matrix element one may, as usual, divide the time interval into N infinitesimal
time slices of length ε

e−iHt = e−iHε e−iHε · · · e−iHε︸ ︷︷ ︸
N

(4)

and insert the unity operator (2) at each dividing point. Together with the expression for the
product of two coherent states

〈z|z′〉 = exp
[− 1

2 |z|2 − 1
2 |z′|2 + z∗z′] (5)

it leads to the following form for the matrix element of the evolution operator:

〈{zω}| e−iHt |{z′
ω}〉 =

∏
ω

N−1∏
n=1

[∫
dz∗

ωn dzωn

π

]
exp

[
−

∑
ω

(
1

2
|zω0|2 +

1

2
|zωN |2

+
N−1∑
n=1

|zωn|2 −
N∑

n=1

z∗
ωn zωn−1

)
− i

N∑
n=1

εH({z∗
ωn}, {zωn−1})

]
(6)

with the boundary conditions

zω0 = z′
ω z∗

ωN = z∗
ω. (7)

Using the identity

N∑
n=1

z∗
n zn−1 −

N−1∑
n=1

|zn|2 = 1

2
(z∗

N zN−1 + z∗
1 z0) +

ε

2

N−1∑
n=1

(
zn

z∗
n+1 − z∗

n

ε
− z∗

n

zn − zn−1

ε

)
(8)
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and performing the continuum limit in time (ε → 0, N → ∞) one can get the following
functional integral expression for the matrix element:

〈{zω}| e−iHt |{z′
ω}〉 =

∏
τ

∏
ω

∫
dz∗

ω(τ ) dzω(τ )

π

× exp

[
−1

2

∑
ω

(|zω|2 + |z′
ω|2) + S({zω(τ )}, {z∗

ω(τ )})
]

. (9)

Here S denotes the action depending on the trajectories zω(τ ) and z∗
ω(τ )

S({zω(τ )}, {z∗
ω(τ )}) = 1

2

∑
ω

(z∗
ω(t)zω(t) + z∗

ω(0)zω(0))

+
∫ t

0

[
1

2

∑
ω

(zω(τ )ż∗
ω(τ ) − z∗

ω(τ )żω(τ )) − iH({z∗
ω(τ )}, {zω(τ )})

]
dτ (10)

which must be evaluated using the boundary conditions

zω(0) = z′
ω z∗

ω(t) = z∗
ω. (11)

The form of the action (10) differs from the action sometimes used in the literature (for
example in [21]) by the first two additional terms. Only with these terms are the correct results
obtained if one employs the usual methods for calculating functional integrals [20]. We note
in passing that the endpoints zω and z∗

ω are conjugates of each other but the trajectories zω(τ )

and z∗
ω(τ ) are not.

Simplifying the first and the second terms under the integral in equation (10), one can
write

S({zω(τ )}, {z∗
ω(τ )}) =

∑
ω

z∗
ω(t)zω(t) −

∫ t

0
L({z∗

ω(τ )}, {zω(τ )}) dτ (12)

where

L({z∗
ω(τ )}, {zω(τ )}) =

∑
ω

z∗
ω(τ )żω(τ ) + iH({z∗

ω(τ )}, {zω(τ )}). (13)

As described in appendix A for the backward direction of time, i.e. for the matrix element
of the Hermitian conjugated evolution operator eiHt , one has to use the action S̃ of the form
(A.6). So the actions for forward and backward propagations, S and S̃, differ by the first terms
depending on the end points of the trajectories and by the sign of the functional parts but are
determined by one and the same Lagrangian function L (equation (13)).

3. Dissipative model Hamiltonian

Next we will consider the Hamiltonian for one damped harmonic oscillator coupled to a heat
bath consisting of a large number of independent harmonic modes. The Hamiltonian will be
of the so-called Caldeira–Leggett type [5, 6]

H = Hs + Hb + Hsb + Hr (14)

where

Hs = ω0a
+a Hb =

∑
ω

ωa+
ωaω (15)

represent the relevant harmonic oscillator with frequency ω0 and the thermal bath of oscillators
with frequencies ω.
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The coupling between the system oscillator and the bath is considered in the coordinate–
coordinate coupling model

Hsb = q
∑

ω

cωxω (16)

where q is the coordinate of the system oscillator, xω are the coordinates of the bath modes
and cω denotes the constants of interaction between the relevant oscillator and the oscillators
of the bath at frequencies ω. The interaction Hamiltonian Hsb can be rewritten using creation
and annihilation operators as

Hsb =
∑

ω

kω(a+ + a)
(
a+

ω + aω

)
(17)

where the kω are connected to the cω by

cω = 2
√

Mω0 mω ωkω. (18)

M and mω denote the masses of the system oscillator and the oscillators in the bath, respectively.
In some of the following calculations, we will consider the RWA which consists of

neglecting the terms proportional to a+a+
ω and aaω in the interaction part of the Hamiltonian

(17), i.e.

H RWA
sb =

∑
ω

kω

(
a+aω + aa+

ω

)
. (19)

The terms a+a+
ω and aaω are associated with high frequencies ω0 + ω and are assumed to be

very small. In section 5, we will discuss the criterion of validity for the RWA.
The system–bath coupling leads to the appearance of an additional contribution to the

system potential. Without this additional renormalization term Hr , the system–bath coupling
would lead to a dissipation-dependent shift which is undesirable. In order to cancel this
contribution one introduces the renormalization term Hr

Hr =
∑

ω

k2
ω

ω
(a + a+)2. (20)

In this way, the frequency of the system Hamiltonian stays almost independent of the
dissipation strength.

4. Evaluation of the path integral by diagonalization of the Lagrangian

Next we will consider the Hamiltonian in the RWA (see equation (19)) and neglect the
renormalization term which is very small for small dissipation strength. The corresponding
Lagrangian function (13) has the form

L({zω(τ )}, {z∗
ω(τ )}, a(τ ), a∗(τ )) =

∑
ω

żω(τ )z∗
ω(τ ) + ȧ(τ )a∗(τ )

+ iω0a
∗(τ )a(τ ) + i

∑
ω

ωzω(τ)z∗
ω(τ ) + i

∑
ω

kω(a(τ )z∗
ω(τ ) + a∗(τ )zω(τ )) (21)

together with the boundary conditions

zω(0) = z′
ω z∗

ω(t) = z∗
ω (22)

a(0) = a′ a∗(t) = a∗. (23)

Here a (a∗) denotes the system trajectories and zω (z∗
ω) denotes the trajectories of the bath

modes with frequency ω.
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One can introduce new trajectories A(τ) and A∗(τ ) using the following transformations:

a(τ) =
∑
�

α� A�(τ) (24)

a∗(τ ) =
∑
�

α� A∗
�(τ) (25)

zω(τ ) =
∑
�

β�ω A�(τ) (26)

z∗
ω(τ ) =

∑
�

β�ω A∗
�(τ). (27)

The transformation for a∗(τ )
(
z∗
ω(τ )

)
must be the same as for a(τ)

(
zω(τ )

)
because of the

symmetry of the Hamiltonian (Lagrangian) as a function of a(τ) and a∗(τ )
(
zω(τ ) and z∗

ω(τ )
)
.

Substituting a(τ), a∗(τ ), zω(τ ) and z∗
ω(τ ) as functions of A(τ) and A∗(τ ) into the right-hand

side of the Lagrangian (21) and requiring that after the transformation the Lagrangian has to
have the form

L({A�(τ)}, {A∗
�(τ)}) =

∑
�

Ȧ�(τ)A∗
�(τ) + i

∑
�

�A∗
�(τ)A�(τ) (28)

one can get the following orthogonality condition for the transformation matrix:

α� α�′ +
∑

ω

β�ω β�′ω = δ��′ (29)

together with the equations for the transformation matrix coefficients

ω0 α� +
∑

ω

kω β�ω = �α� (30)

and

ωβ�ω + kω α� = �β�ω. (31)

Requiring the orthogonality of the transformation and employing equation (29) one can write
the back transformation as

A�(τ) = α� a(τ) +
∑

ω

β�ω zω(τ ) (32)

A∗
�(τ) = α� a∗(τ ) +

∑
ω

β�ω z∗
ω(τ ). (33)

Then, requiring the orthogonality again for the forward transformation we can get∑
�

α2
� = 1 (34)

∑
�

α� β�ω = 0 (35)

∑
�

β�ω β�ω′ = δωω′ . (36)

The Lagrangian (28) is now the Lagrangian of independent harmonic oscillators. Using the
stationary-phase method (i.e. the condition δ

∫ t

0 L dτ = 0) one can get the trajectories which
yield the main contribution to the functional integral of type (9)
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A�(τ) = A�(0) e−i�τ (37)

A∗
�(τ) = A∗

�(0) ei�τ . (38)

Substituting this solution into the Lagrangian we see that L = 0 on the stationary trajectories.
The last task is to find the constants A�(0) and A∗

�(0). Using boundary conditions (22)
and (23), back transformation (32) and (33) and solution (37) and (38) one can obtain

A�(0) = α� a′ +
∑

ω

β�ω z′
ω (39)

A∗
�(0) =

(
α� a∗ +

∑
ω

β�ω z∗
ω

)
e−i�t . (40)

Substituting a(τ), a∗(τ ), zω(τ ) and z∗
ω(τ ) as functions of A�(τ) and A∗

�(τ) into the action S
(see equation (10)), using equations (29, 37–40) and taking into account that L = 0 we obtain
for the matrix element of the evolution operator

〈{zω}|〈a| e−iHt |a′〉|{z′
ω}〉 = exp

[
−1

2
|a|2 − 1

2
|a′|2 − 1

2

∑
ω

|zω|2 − 1

2

∑
ω

|z′
ω|2

+ ξ(t)a∗a′ +
∑

ω

ηω(t)(a∗z′
ω + a′z∗

ω) +
∑
ω,ω′

µω,ω′(t)z∗
ω z′

ω′

]
(41)

where

ξ(t) =
∑
�

α2
� e−i�t (42)

ηω(t) =
∑
�

α� β�ω e−i�t (43)

µωω′(t) =
∑
�

β�ω β�ω′ e−i�t . (44)

As one can see now we have an exponent of Gaussian type in expression (41) which
depends on the end points only. The more general case of diagonalizing the Lagrangian
beyond the RWA is given in appendix B.

5. Spectral equation and reduction to the RWA

The procedure of diagonalizing the Lagrangian of the interacting harmonic oscillators
presented above allows us to transform the Lagrangian into a Lagrangian of independent
harmonic modes. In order to investigate the properties of such a system, we must know the
distribution of frequencies of the new harmonic oscillators. Next we will derive the equations
for the eigenfrequencies of the independent modes and then, with the help of those equations
we will discuss the reduction from the non-RWA to the RWA results.

First, consider the system–bath interaction within the RWA. Having equations (30) and
(31) for the transformation matrix let us express β�ω from equation (31) as

β�ω = kω

α�

� − ω
(45)
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and substitute this expression into equation (30). The equation one obtains is the equation for
the eigenfrequencies of the uncoupled modes

� − ω0 =
∑

ω

k2
ω

� − ω
. (46)

The same procedure can be performed for the transformation matrix without the RWA.
Expressing α̃�, β�ω and β̃�ω as functions of α� by using equations (B.10) and (B.11) and
then substituting the obtained expressions into equation (B.8) with � = �′ we can obtain the
spectral equation without the RWA

(� + ω0)(� − ω0) = 4ω0

∑
ω

k2
ω ω

(� − ω)(� + ω)
(47)

which has a quadratic dependence on the frequencies in comparison to equation (46) where
the dependence is linear.

The reduction to the RWA was discussed in [14] by analysis of the time evolution of the
creation and annihilation operators. Here we reduce to the RWA in terms of spectral equations
and transformation matrices. Let us consider the case when the kω are small. Then the
right-hand side of equation (47) becomes important only when � is close to ω0 (for simplicity
we consider only the solution of the spectral equation with positive real part). Hence we can
substitute � + ω0 by 2ω0 on the left-hand side of equation (47). On other hand, the main
contribution to the sum on the right-hand side comes from ω values close to �. Performing
all replacements we get the spectral equation (46) within the RWA.

Now consider the coefficients α̃� which mix the trajectories a and a∗. From
equation (B.10) and the assumption that kω is small, one gets

α̃� � α�

ω0 − �

2ω0
. (48)

Since ω0 − � 	 ω0, α̃� can be neglected in equations (B.10) and (B.11). The same analysis
can be done for the coefficients β̃�ω. After neglecting the non-RWA coefficients α̃� and β̃�ω,
equations (B.10) and (B.11) are reduced to equations (30) and (31) for the transformation
matrix in RWA. An analogous procedure can be performed for the analysis of the spectral
equation solution with negative real part. In this case, the coefficients α̃� and β̃�ω are not
small but the coefficients α� and β�ω should be neglected. Actually we have to take into
account both roots of the spectral equation and within the RWA we should neglect terms such
as α�α̃�′ , α�β̃�ω′ , α̃�β�ω′ and β̃�ωβ�′ω′ (the terms �̃, �̃ω and ̃ωω′ in equations (B.23–B.26))
which are non-RWA terms. As the reduction can be done only in case of weak system–bath
coupling, the RWA is valid only in this case.

Next, we will obtain the renormalized spectral equation, i.e. the spectral equation for the
system described by the Hamiltonian (14) with the counterterm (20). Using equations (B.10),
(B.11) and (B.14) we get the spectral equation including the renormalization

�2 − ω2
0 − 4ωR ω0 = 4ω0

∑
ω

k2
ω ω

�2 − ω2
. (49)

Using the identity

1

� − ω + i0
= P

1

� − ω
− iπδ(� − ω) (50)

and performing the continuum limit∑
ω

k2
ω =

∫
dω g(ω) (51)
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where the function g(ω) = ∑
ω′ k

2
ω′ δ(ω − ω′) is connected with the spectral density of the

bath J (ω) as

J (ω) = 2πMω0 g(ω) (52)

we can write equation (49) in the form

ω2
0 − �2 + 4ω0 �ωR = 2π iω0 g(�) (53)

where the renormalized frequency shift is

�ωR = ωR − 1

2

∫
dω g(ω)

1

� + ω
+

1

2

∫
dω g(ω)P

1

� − ω
. (54)

Let us assume that the spectral equation has a complex solution and the spectral density of the
bath can be written in the form

g(ω) = γω

2πω0
θ(ω, ωc) (55)

where θ(ω, ωc) denotes the cut-off function with the cut-off frequency ωc. In this case, we
can write for the frequency shift

�ωR = γ

2πω0
P

∫
dω θ(ω, ωc)

�2

�2 − ω2
. (56)

The frequency shift in the unnormalized spectral equation (i.e. ωR = 0) can be written as

�ω = γ

2πω0
P

∫
dω θ(ω, ωc)

ω2

�2 − ω2
. (57)

It is easy to see that �ω increases on enlarging the cut-off frequency and �ω becomes infinite
when θ(ω, ωc) = 1, and the real part of the solution ω without counterterm goes to zero with
increasing cut-off frequency, i.e. on enlarging the coupling to the high-frequency bath modes.
But the renormalized frequency shift (56) decreases with increasing cut-off frequency. In the
limiting case θ(ω, ωc) = 1, the renormalized frequency shift �ωR vanishes and the spectral
equation which reads

ω2
0 − �2 = 2π iω0 g(�) (58)

has the well-known solution for the classical damped harmonic oscillator

�0 = ±
√

ω2
0 − γ 2

4
− i

γ

2
. (59)

So, besides the physical reasoning for the renormalization term [1], it has to be introduced to
avoid singularities in the damping problem.

6. Calculation of the density matrix with non-equilibrium initial conditions

6.1. Interaction in RWA

As we are interested in a system interacting with a surrounding thermal environment, we
need to calculate the reduced density operator which keeps all information about the relevant
system. First, we calculate the time propagation of the reduced density matrix for the damped
harmonic oscillator connected to a thermal bath which is prepared independently in the initial
moment of time. Physically this means that the initial excitation of the system was faster than
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the time scale of the undamped motion of the system and the time of relaxation in the thermal
bath.

Let us consider the density operator of the full system (system plus bath) in the Heisenberg
picture

ρ(t) = e−iHtρ(0) eiHt . (60)

The initial density operator is assumed to be factorized

ρ(0) = ρs(0)ρb(0) (61)

where ρs and ρb correspond to the density operators of system and bath, respectively. Here we
want to note in passing that the form (61) of the initial density operator does not mandatorily
mean that the initial state is uncorrelated [14]. Below the case of correlated initial conditions
will also be investigated.

We consider an initial bath with temperature Tb

〈{zω}|ρb(0)|{z′
ω}〉 = 1

Zb

exp

[
−1

2

∑
ω

|zω|2 − 1

2

∑
ω

|z′
ω|2 +

∑
ω

e−ω/Tb z∗
ω z′

ω

]
(62)

and a system with arbitrary initial conditions determined by the function f0(a
∗
1 , a2)

〈a1|ρs(0)|a2〉 = exp

[
−|a1|2

2
− |a2|2

2
+ f0(a

∗
1 , a2)

]
. (63)

Using the identity∫
dz dz∗

π
e−γ |z|2−δz f (z∗) = 1

γ
f

(
δ

γ

)
(64)

which is valid for any integral of Gaussian type, employing our result (41) and tracing out the
bath, one obtains the matrix element of the reduced density operator in the integral form

〈a|ρs(t)|a′〉 = F(Tb, t)

∫
da1 da∗

1

π

da2 da∗
2

π
exp

[
−|a|2

2
− |a′|2

2
− |a1|2 − |a2|2 + f0(a

∗
1 , a2)

+
ξ

1 + Q
a∗a1 +

ξ ∗

1 + Q
a∗

2a
′ +

Q

1 + Q
a∗a′ +

(
1 − |ξ |2

1 + Q

)
a1a

∗
2

]
(65)

where

Q(t, Tb) =
∑

ω

|ηω(t)|2nω nω = 1

eω/Tb − 1
. (66)

The function F(t, Tb) is an unknown function coming from the integration over the end points
of the bath trajectories and can be determined from the normalization condition Tr ρ = 1,
yielding

1 = F(Tb, t)(1 + Q)

∫
da∗

1 da1

π
exp(f0(a

∗
1 , a1) − |a1|2)

= F(Tb, t)(1 + Q) Tr(ρs(0)) = F(Tb, t)(1 + Q). (67)

In order to evaluate the function ξ(t) defined in equation (42) we will use the method proposed
in [22]. Using equation (46), identity (50) and performing the continuum limit (51) we get an
equation for the eigenfrequencies

� − ω0 = P
∫

dω g(ω)

� − ω
− iπg(�). (68)
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Then, using equation (29) for � = �′ and noting that

1 +
∑

ω

k2
ω

(� − ω)2
= d

d�

(
� − ω −

∑
ω

k2
ω

� − ω

)
(69)

we can write ξ(t) in integral form

ξ(t) =
∑
�

α2
� e−i�t = 1

2π i

∫ −∞

∞
d�

e−i�t

� − ω̃(�) + iπg(�)
(70)

where

ω̃(�) = ω0 + P
∫

dω
g(ω)

� − ω
. (71)

The residues of this integral are determined by equation (46) for the eigenfrequencies. So the
function ξ(t) is the Green function of the full system, and the poles of its Fourier transform
determine the eigenfrequencies of the system. Using equation (65) one finds that the Green
function ξ(t) and its conjugate ξ ∗(t) determine the time evolution of the mean values of the
annihilation and creation operators, respectively, as

〈a(t)〉 = 〈a(0)〉 ξ(t)

1 + Q(t, Tb)
(72)

〈a+(t)〉 = 〈a+(0)〉 ξ ∗(t)
1 + Q(t, Tb)

. (73)

As was shown in section 4, the RWA leads to correct results only in the case of weak
system–bath coupling. In this limit, one can replace � by ω0 in the expressions for ω̃(�) and
g(�). The Green function ξ(t) then reads

ξ(t) = exp(−iω̃(ω0)t − πg(ω0)t). (74)

The function Q(t, Tb) in this case is given by

Q(t, Tb) = nω0(1 − |ξ(t)|2). (75)

In order to confirm the correctness of expression (65) let us calculate the relaxation of the
mean value of the occupation number for the system

〈ns(t)〉 = Q(t, Tb) + ns(0)|ξ(t)|2. (76)

If we consider ohmic dissipation J (ω) = Mγω, using equation (52) we can write [22]

〈ns(t)〉 = ns(0) e−γ t + nω0(1 − e−γ t ) (77)

where γ 	 ω0 should be fulfilled.
The functions ξ(t) and ξ ∗(t) represent the connection between the initial and final points

of the trajectories in expression (65) and hence describe the process of decoherence of the
system. For time t = ∞ using equation (74) one gets ξ(t = ∞) = ξ ∗(t = ∞) = 0, i.e. the
system loses the information about its initial state. The matrix element of the reduced density
matrix at t = ∞ reads

〈a|ρs(t = ∞)|a′〉 = 1

Zs

exp

[
−|a|2

2
− |a′|2

2
+ e−ω0/Tba∗a′

]
(78)

Zs = 1

1 − e−ω0/Tb

which exactly corresponds to the system described by density operator ρ = 1
Zs

e−ω0a
+a/Tb .
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Figure 1. Evolution of P(x, t) (x0 = 7, σ = 0.5, Tb = 3ω0 and γ = 0.2ω0).

Formula (65) together with equations (74) and (75) can be used for the calculation
of the mean values of observables. One has to express the initial state of the system as well
as the operator of the observable via coherent states with the help of equation (1) and evaluate
the integrals over the end points of the trajectories in equation (65) using equation (64). As
an example, we calculate the evolution of the level populations. Assuming that the system
initially is in its nth eigenstate, one gets for the evolution of the mth level

〈m|ρ(t)|m〉 = 1

n!m!

∂m∂n

∂ζm
1 ∂ζ n

2


ζ1=ζ2=0

1

(1 + (1 − ζ1)Q(t, Tb))(1 − ζ2) + ζ2|ξ(t)|2(1 − ζ1)

(79)

where the ζ1 and ζ2 are only auxiliary variables. The population dynamics is discussed in
more detail below.

6.2. Evolution of the wave packet and population dynamics

Here we consider the relaxation in a system initially prepared in a pure state with some
wavefunction |ψ〉. The initial state of the bath is an equilibrium state with temperature Tb.
For the calculation of the time evolution of the system we will use equation (B.22) together
with equations (B.23) to (B.32). Then, we assume the non-RWA terms (B.28, B.30, B.32) as
a perturbation (i.e. the coupling strength has to be small enough). The calculations presented
below have been done to first order of this perturbation. For simplicity ohmic damping, i.e.
an infinite cut-off frequency, has been assumed.

First we will determine the time evolution of a Gaussian wave packet with width σ and
peak position x0, i.e.

ρs(0) = |ψ(x, t = 0)〉〈ψ(x, t = 0)| (80)

where

|ψ(x, t = 0)〉 = 1√√
πσ

exp

[
− (x − x0)

2

2σ 2

]
(81)

For simplicity, we set the initial momentum to zero. The unit of measurement for x, x0

and σ is 1/
√

Mω0. In figures 1 and 2, the matrix element of the reduced density operator in
coordinate representation P(x, t) = 〈x|ρs(t)|x〉 is shown for two different initial wave packets
and temperatures. One can see that the width of the wave packet slightly oscillates with time,
and the damping time for the peak position coordinate x̄ of the wave packet is larger than the
time in which the width of the wave packet changes from its initial value to the equilibrium
one. Note that the wave packet keeps its Gaussian form during the time evolution.
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Figure 2. Evolution of P(x, t) (x0 = 7, σ = 3, Tb = ω0 and γ = 0.2ω0).

At time t = ∞, the function P(x) can be written as

P(x) = 1√√
πσf

exp

(
− x2

2σ 2
f

)
(82)

where the final width σf is

σf =
√

1 + 2Q(Tb, t = ∞). (83)

In the high-temperature limit of the bath, one gets σ 2
f ∼ Tb as was shown before [7].

The time evolution of the coherent state (i.e. σ = 1) within the RWA at Tb = 0 has the
form

P(x, σ = 1) = 1

π1/4
exp

[
(x − x̄)2

2

]
(84)

x̄ = x0 Re(ξ(t)) = x0 cos(�0t) exp(−�1t)

where �0 and �1 are the real and imaginary parts of the solution of the spectral equation (46),
respectively. Although equation (84) implies the existence of a non-dissipative coherent state
in RWA, it was shown already [14], that they can only exist at zero temperature and in systems
that meet the conditions for the RWA.

Next, in figures 3 and 4 the time evolution of the populations of the system oscillator
and the corresponding mean occupation numbers are shown. We considered the cases of a
mixed and a pure initial state of the system. The difference between the populations with
pure and mixed initial states is due to the influence of the non-RWA terms in the presence of
coherence in the case of a pure initial state. The unphysical results at t = 0+ in figure 4 are the
consequence of jolts in the domain 0 < t < 1/ωc due to the factorized initial conditions, as
was discussed by many authors (see, for example, [14] and references therein). In the case of
uncorrelated initial conditions, the changes in the system at the beginning of the system–bath
interaction are mostly determined by the fast decoherence of the system where the time scale
of decoherence is τd ∼ 1/ωc. In our case, ωc = ∞ and therefore the instantaneous changes
(initial jolts) of the population occur. In spite of this, the mean occupation number has the
correct value at t = 0+.

Finally, in figure 5 we plotted the population dynamics of a system initially prepared in
a coherent state |a〉 with |a|2 = 1. In spite of the presence of coherence for this initial state,
one can observe relatively weak influence of non-RWA terms and an absence of the initial
jolts (one can check using the formula ρm,m(0) = |a|2m

m! e−|a|2 for the initial state that the level
populations have the correct values at t = 0). Since the uncertainty relation is minimized in
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Figure 3. Evolution of the population ρmm(t) of the first seven levels (m = 0, 1, . . . , 6) (a) and
the mean value of the occupation number n(t) (b) starting from the mixed initial state of the system
ρs(0) = 0.25|0〉〈0| + 0.25|2〉〈2| + 0.25|4〉〈4| + 0.25|6〉〈6|. Tb = 3ω0 and γ = 0.2ω0. Note that in
the levels with m > 6 there is also some population at this value of temperature.
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Figure 4. Evolution of the population of the first seven levels (m = 0, 1, . . . , 6) and
the mean value of the occupation number starting from the pure initial state of the system
|ψ(0)〉 = 0.5|0〉 + 0.5|2〉 + 0.5|4〉 + 0.5|6〉. Tb = 3ω0 and γ = 0.2ω0.

coherent states the behaviour of the system at t ≈ 0 is close to a classical one whereas the
initial jolts caused by the fast initial decoherence appear to be purely a quantum effect.
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Figure 5. Evolution of the population of the first seven levels (m = 0, 1, . . . , 6) starting from the
coherent initial state of the system |ψ(0)〉 = |a〉, |a|2 = 1. Tb = 3ω0 and γ = 0.2ω0.

6.3. Influence of correlated initial system–bath conditions

In this subsection, we consider the influence of the initial correlations on the evolution of the
mean value of the system coordinate and of the population dynamics. Let us suppose that the
relevant system and the bath initially are in an equilibrium state with the temperature T, but
the relevant vibrational mode is on a shifted harmonic potential surface, i.e.

V (x) = Mω2
0(x + x1)

2

2
. (85)

Thus, the full system at the time t < 0 is described by the Hamiltonian

H̃ = H + q(a+ + a) (86)

where q = ω0 x1/
√

2x0, x0 = 1/
√

Mω0, and H is determined by equation (14). Here we will
restrict ourselves to the RWA. The time evolution of the matrix element of the reduced density
matrix is calculated in appendix C in the case T = 0. The result reads

〈a| e−iHt e−λH̃ eiHt |a′〉 = exp

[
−|a|2

2
− |a′|2

2
− ε(t)a∗ − ε∗(t)a′ − |ε(t)|2

]
(87)

ε(t) = q
∑
�

α2
�

�
e−i�t (88)

ε∗(t) = q
∑
�

α2
�

�
ei�t . (89)

In order to show the influence of the initial correlations let us calculate the evolution of the
mean value of the system coordinate

〈x(t)〉 = x0√
2
〈a(t) + a∗(t)〉 = − x0√

2
(ε(t) + ε∗(t)). (90)

The function ε(t) and its conjugate ε∗(t) determine the time evolution of the annihilation and
creation operators, respectively, and converge to the functions q

ω0
ξ(t) and q

ω0
ξ ∗(t), respectively,

if γ is very small. This can be seen by comparing equations (87) and (65) with the initial
condition f0(a

∗
1 , a2) = q

ω0
(a∗

1 +a2) and with zero temperature of the bath. Calculating ε(t) and
ε∗(t) in the same manner as the Green function ξ(t), in the case of weak ohmic dissipation,
one can get

〈x(t)〉 = −x1
ω0ω̃

ω̃2 + (γ /2)2

(
cos ω̃t +

γ

2ω̃
sin ω̃t

)
e−γ t/2 (91)
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where ω̃ = ω̃(ω0) is determined by equation (71). One can see that the trajectory determined
by equation (91) is a classical trajectory which can be obtained for the damped harmonic
oscillator only by using the correlated initial system–bath conditions [14]. Since the initial
mean value of momentum is zero for the considered initial state, d〈x(t)〉

dt


t=0 = 0 as it should

be, while for the mean value x̄ from equation (84) obtained without initial correlations this
condition is not satisfied.

7. Conclusions

In this paper, we have introduced an alternative treatment for the investigation of systems
described by Hamiltonians with bilinear and quadratic terms and we applied this method to
the problem of one harmonic oscillator coupled to a heat bath. In contrast to the well-known
Feynman–Vernon influence-functional approach, we did not eliminate the bath but cancelled
the system–bath interaction by diagonalization of the Lagrangian. In this way, one can obtain
spectral equations for the system of interest which have been investigated in this work.

In contrast to a similar procedure of diagonalizing the Hamiltonian which was used in [14]
and allows one to get the time evolution of the creation and annihilation operators, the present
treatment gives the time evolution of the reduced density matrix and therefore leads to the full
description of the relevant system. Furthermore, it allows us to consider a non-equilibrium
bath and, therefore, correlated initial system–bath conditions. This consideration is normally
not possible within the treatments which are based on the master equations. Besides this, our
method gives a quite simple expression (65) for the reduced density matrix in RWA which can
easily be used for further evaluation of the expectation values of observables, although even
in the first order of non-RWA terms the calculations turned out to be quite unwieldy.

The proposed approach was tested for simple factorized initial conditions when the
bath initially is in thermal equilibrium with an arbitrary temperature, and for correlated
initial conditions when the relevant system initially is in thermal equilibrium with the bath
but on a shifted potential. Instead of Langevin-like equations for the trajectories of the
relevant system in the influence-functional method, we have a multi-dimensional integral
over the end points of the trajectories. In the last section of this paper, we have shown the
calculation method for such integrals in the case of weak damping. The influence of non-RWA
terms such as �̃, �̃ω and ̃ωω′ becomes evident in the population dynamics with pure initial
system conditions in the absence of initial correlations. In the first order of the perturbative
treatment in the system–bath coupling, the non-RWA terms are proportional to the coupling
parameter γ (in the case of ohmic dissipation J (ω) = Mγω), and in the presence of coherences
in the initial system state they lead to initial jolts in the population. But in the case of a system
initially prepared in a coherent state, the initial jolts disappear since the system behaves almost
classically at the beginning of the evolution.

The well-known Feynman–Vernon influence-functional approach is valid only in case of
a bilinear system–bath coupling. One can eliminate the bath in the Feynman–Vernon manner
in the case of an arbitrary system part in the interaction Hamiltonian using the diagonalization
of the Lagrangian function in order to reduce the system of uncoupled harmonic oscillators
to a system of one oscillator bilinearly coupled to a new effective bath and non-bilinearly
coupled to the relevant system. This procedure of diagonalization is presented in our work.
As this diagonalization can be done for the Hamiltonian in the creation/annihilation-operator
representation, one has to use the coherent-state representation of the path integrals. After the
elimination of the new bath, only integrals over the system and one harmonic mode need to
be calculated. A similar procedure of normal mode transformation was used in [15] with a
Hamiltonian in phase-space representation for arbitrary system–bath coupling.
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Another possible application of the presented method is the description of the time
evolution of electronic multilevel systems which frequently appear in electron transfer
problems [17]. Using the mapping approach [23–25] the system of discrete electronic states
is treated as a system of coupled harmonic oscillators in the RWA. Thus the dynamics of the
electronic part of a system consisting of several electronic states can be investigated within
the real-time coherent-state path integral technique developed in the present work.
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Appendix A. The matrix element of evolution operator eiHt

Performing a similar procedure as for the operator e−iHt in section (2), for the inverse direction
of time one gets

〈{zω}| eiHt |{z′
ω}〉 =

∏
ω

N−1∏
n=1

[∫
dz∗

ωn dzωn

π

]
exp

[
−

∑
ω

(
1

2
|zω0|2 +

1

2
|zωN |2

+
N−1∑
n=1

|zωn|2 −
N∑

n=1

z∗
ωn−1 zωn

)
+ i

N∑
n=1

εH({z∗
ωn−1}, {zωn})

]
(A.1)

with the boundary conditions

z∗
ω0 = z∗

ω zωN = z′
ω. (A.2)

Then, using the identity

N∑
n=1

z∗
n−1 zn −

N−1∑
n=1

|zn|2 = 1

2
(z∗

0 z1 + z∗
N−1 zN) +

ε

2

N−1∑
n=1

(
z∗
n

zn+1 − zn

ε
− zn

z∗
n − z∗

n−1

ε

)
(A.3)

and performing the continuum limit, for the matrix element of the evolution operator one can
write

〈{zω}| eiHt |{z′
ω}〉 =

∏
τ

∏
ω

∫
dz∗

ω(τ ) dzω(τ )

π

× exp

[
−1

2

∑
ω

(|zω|2 + |z′
ω|2) + S̃({zω(τ )}, {z∗

ω(τ )})
]

(A.4)

with the boundary conditions

z∗
ω(0) = z∗

ω zω(t) = z′
ω (A.5)

and

S̃({zω(τ )}, {z∗
ω(τ )}) =

∑
ω

z∗
ω(0)zω(0) +

∫ t

0
L({z∗

ω(τ )}, {zω(τ )}) dτ. (A.6)
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Appendix B. Diagonalization of the Lagrangian without the RWA

Here we will evaluate the path integral (9) with the Hamiltonian without the RWA (17). First
the renormalization term Hr will be neglected and reintroduced in the second part. The action
(10) has the form

S({zω(τ )}, {z∗
ω(τ )}) = 1

2

[
a∗(t)a(t) − a∗(0)a(0) +

∑
ω

z∗
ω(t)zω(t) −

∑
ω

z∗
ω(0)zω(0)

]

−
∫ t

0
L(a(τ ), a∗(τ ), {z∗

ω(τ )}, {zω(τ )}) dτ (B.1)

where the Lagrangian L is given by

L(a(τ ), a∗(τ ), {z∗
ω(τ )}, {zω(τ )})

= 1

2
ȧ(τ )a∗(τ ) − 1

2
ȧ∗(τ )a(τ ) +

1

2

∑
ω

żω(τ )z∗
ω(τ ) − 1

2

∑
ω

ż∗
ω(τ )zω(τ )

+ iω0a
∗(τ )a(τ ) + i

∑
ω

z∗
ω(τ )zω(τ ) + i

∑
ω

kω(a∗(τ ) + a(τ))(z∗
ω(τ ) + zω(τ ))

(B.2)

which should be taken with the boundary conditions (22) and (23).
Going beyond the RWA we have to use an extended transformation, since the non-RWA

terms in the interaction part of the Hamiltonian mix the operators a with a+. The transformation
which should be used in this case is

a =
∑
�

α� A� +
∑
�

α̃� A∗
� (B.3)

a∗ =
∑
�

α� A∗
� +

∑
�

α̃� A� (B.4)

zω =
∑
�

β�ω A� +
∑
�

β̃�ω A∗
� (B.5)

z∗
ω =

∑
�

β�ω A∗
� +

∑
�

β̃�ω A�. (B.6)

Below we will follow a similar procedure as within the RWA. Substituting the trajectories
a, a∗, zω and z∗

ω as functions of A� and A∗
� into the Lagrangian (B.2) we require the Lagrangian

to have diagonal form after the transformation, i.e.

L(a(τ ), a∗(τ ), {z∗
ω(τ )}, {zω(τ )})

= 1

2

∑
�

Ȧ�(τ)A∗
�(τ) − 1

2

∑
�

Ȧ∗
�(τ)A�(τ) + i

∑
�

�A∗
�(τ)A�(τ). (B.7)

It leads to the following orthogonality relations for the transformation matrices:

α� α�′ − α̃� α̃�′ +
∑

ω

β�ω β�′ω −
∑

ω

β̃�ω β̃�′ω = δ��′ (B.8)

α� α̃�′ − α̃� α�′ +
∑

ω

β�ω β̃�′ω −
∑

ω

β̃�ω β�′ω = 0 (B.9)
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and to the equations for the transformation matrix coefficients

α�(ω0 − �) = α̃�(ω0 + �) = −
∑

ω

kω(β�ω + β̃�ω) (B.10)

β�ω(ω − �) = β̃�ω(ω + �) = −kω(α� + α̃�). (B.11)

One may also diagonalize the Lagrangian including renormalization (20). The
renormalized Lagrangian LR corresponding to the Hamiltonian (14) is the Lagrangian (B.2)
with the additional term

Lr = iωR((a∗)2 + a2 + 2a∗a) (B.12)

with the renormalization frequency

ωR =
∑

ω

k2
ω

ω
. (B.13)

It is obvious that the orthogonality relations (B.8) and (B.9) remain the same. Equation (B.10)
for the transformation matrix coefficients changes and is now given by

α�(ω0 − �) = α̃�(ω0 + �) = −
∑

ω

kω(β�ω + β̃�ω) − 2ωR(α� + α̃�). (B.14)

Equation (B.11) remains the same.
The back transformation reads

A� = α� a − α̃� a∗ +
∑

ω

β�ω zω −
∑

ω

β̃�ω z∗
ω (B.15)

A∗
� = α� a∗ − α̃� a +

∑
ω

β�ω z∗
ω −

∑
ω

β̃�ω zω. (B.16)

The final step is to find the additional orthogonality relations for the transformation
matrices. Substituting A� and A∗

� as functions of a, a∗, zω and z∗
ω (B.15) and (B.16) into

equation (B.3) to (B.6) and using the orthogonality of the transformation, one can obtain∑
�

(
α2

� − α̃2
�

) = 1 (B.17)

∑
�

(α� β�ω − α̃� β̃�ω) = 0 (B.18)

∑
�

(α� β̃�ω − α̃� β�ω) = 0 (B.19)

∑
�

(β�ω β�ω′ − β̃�ω β̃�ω′) = δωω′ (B.20)

∑
�

(β�ω β̃�ω′ − β̃�ω β�ω′) = 0. (B.21)

The Lagrangian of form (B.7) describes a system of independent harmonic oscillators.
Applying the stationary-phase method we get the stationary trajectories (37) and (38) and
the Lagrangian is equal to zero at the stationary point.



3038 A Novikov et al

For the matrix element of the evolution operator, one gets

〈{zω}|〈a| e−iHt |a′〉|{z′
ω}〉 = exp

[
−1

2
|a|2 − 1

2
|a′|2 − 1

2

∑
ω

|zω|2 − 1

2

∑
ω

|z′
ω|2

+
1

2

(
a∗(t)a(t) − a∗(0)a(0) +

∑
ω

z∗
ω(t)zω(t) −

∑
ω

z∗
ω(0)zω(0)

)]
. (B.22)

Using the boundary conditions (22) and (23) and the solution for the stationary trajectories
(37) and (38), we can find the connection between the end points of the trajectories
a(τ), a∗(τ ), zω(τ ) and z∗

ω(τ ) at the moments of time τ = 0 and τ = t

a(0) = �(t)a(t) + �̃(t)a∗(t) +
∑

ω

�ω(t)zω(t) +
∑

ω

�̃ω(t)z∗
ω(t) (B.23)

zω(0) = �ω(t)a(t) − �̃∗
ω(t)a∗(t) +

∑
ω′

ωω′(t)zω′(t) +
∑
ω′

̃ωω′(t)z∗
ω′(t) (B.24)

a∗(0) = �∗(t)a∗(t) + �̃∗(t)a(t) +
∑

ω

�∗
ω(t)z∗

ω(t) +
∑

ω

�̃∗
ω(t)zω(t) (B.25)

z∗
ω(0) = �∗

ω(t)a∗(t) − �̃ω(t)a(t) +
∑
ω′

∗
ωω′(t)z

∗
ω′(t) +

∑
ω′

̃∗
ωω′(t)zω′(t) (B.26)

where

�(t) =
∑
�

(
α2

� ei�t − α̃2
� e−i�t

)
(B.27)

�̃(t) =
∑
�

(α̃� α� e−i�t − α� α̃� ei�t ) (B.28)

�ω(t) =
∑
�

(α� β�ω e−i�t − α̃� β̃�ω ei�t ) (B.29)

�̃ω(t) =
∑
�

(α̃� β�ω e−i�t − α� β̃�ω ei�t ) (B.30)

ωω′(t) =
∑
�

(β�ω β�ω′ ei�t − β̃�ω β̃�ω′ e−i�t ) (B.31)

̃ωω′(t) =
∑
�

(β̃�ω β�ω′ e−i�t − β�ω β̃�ω′ ei�t ). (B.32)

Expression (B.22) for the matrix element of the evolution operator, depending on the end points
of the trajectories together with equations (B.23) to (B.32) will be used for the calculation of
the time evolution of the reduced density matrix.

Appendix C. Calculation of the evolution of the density matrix
with correlated initial conditions

The purpose is to calculate the matrix element of the reduced density matrix

1

Zsb

〈a| e−iHt e−λH̃ eiHt |a′〉 (C.1)
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with Zsb = Tr e−λH̃ and λ being the inverse temperature. Writing the matrix element of the
initial density operator e−λH̃ as an imaginary-time path integral and using the procedure of
diagonalization of the Lagrangian presented above, one gets

〈zω|〈a| e−λH̃ |a′〉|z′
ω〉 = exp

[
−|a|2

2
− |a′|2

2
−

∑
ω

|zω|2
2

−
∑

ω

|z′
ω|2
2

+ a∗a′ξ̃ (λ) +
∑

ω

η̃(λ)(a∗z′
ω + a′z∗

ω) +
∑
ωω′

µ̃ωω′(λ)z∗
ω z′

ω′

−ϕ1(λ)a∗ − ϕ2(λ)a′ −
∑

ω

χ1ω(λ)z∗
ω −

∑
ω

χ2ω(λ)z′
ω + χ0(λ)

]
(C.2)

where

ξ̃ (λ) =
∑
�

α2
� e−�λ (C.3)

η̃ω(λ) =
∑
�

α� β�ω e−�λ (C.4)

µ̃ωω′(λ) =
∑
�

β�ω β�ω′ e−�λ (C.5)

ϕ1(λ) = q
∑
�

α2
�

∫ λ

0
e−�(λ−s) ds (C.6)

ϕ2(λ) = q
∑
�

α2
�

∫ λ

0
e−�s ds (C.7)

χ1ω(λ) = q
∑
�

α� β�ω

∫ λ

0
e−�(λ−s) ds (C.8)

χ2ω(λ) = q
∑
�

α� β�ω

∫ λ

0
e−�s ds (C.9)

χ0(λ) = q2
∑
�

α2
�

∫ λ

0

∫ s

0
e−�(s−s ′) ds ′ ds. (C.10)

Below we will consider the case T = 0 (λ = ∞). Hence ξ̃ (λ) = η̃ω(λ) = µ̃ωω′(λ) = 0.
Then, using equation (C.2) together with our result for the matrix element of the evolution
operator (41) and integrating over the end points of the trajectories one obtains for the matrix
element (C.1)

〈a| e−iHt e−λH̃ eiHt |a′〉 = F̃ (t) exp

[
−|a|2

2
− |a′|2

2
− ε1(t)a

∗ − ε2(t)a
′
]

(C.11)

ε1(t) = ξ(t)ϕ1 +
∑

ω

ηω(t)χ1ω (C.12)

ε2(t) = ξ ∗(t)ϕ2 +
∑

ω

η∗
ω(t)χ2ω (C.13)

where the pre-exponential factor F̃ (t) is an unknown function of time coming from the
integration over the end points of the bath trajectories. Using the normalization condition
Tr ρ(t) = 1, one obtains

F̃ (t) = e−ε1(t)ε2(t). (C.14)
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Finally, using equations (C.3) to (C.10) for zero temperature (λ = ∞) and introducing
ε = ε1 (λ = ∞) and ε∗ = ε2 (λ = ∞) one gets the result (87).
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